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AVERAGE ENERGY OF INTERACTING PARTICLES

FOR THERMONUCLEAR REACTIONS

S. T. Perkins

R. J. Howerton
ABSTRACT

The expression for the average energy of the two interacting particles undergoing a
thermonuclear reaction is developed and results are presented for selected reactions
between light isotopes. It is shown that the assumption that the average energy is equal

to 3kT is only valid for a 1/v relative cross section dependence.

*Work performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under contract number W-7405-EN G-48.






I. INTRODUCTION

These are two basic properties of a thermonuclear reaction which are independent
of the number, types, or kinematics of the secondary particles. These are the reaction
rate and the average energy of the two interacting particles. The reaction rate
determines the source strength of suprathermal secondary particles and the depletion of
the plasma consituents. Tables of reaction rates for selected reactions of interest are
available, e.g., Ref. 1. The average energy of the two interacting particles is required for
the overall energy balance. As no such data have been available, this topic will be
developed here.

In the following section, the necessary relation for the average energy of the two
particles underoing a thermonuclear reaction will be developed, and its physical
significance defined. It is often assumed that this quantity is equal to twice the average
energy of the Maxwellian distribution, i.e., 3kT, where kT is the ion temperature. It will
be shown that this assumption is only valid when the relative reaction rate is constant,
i.e., when the relative cross section is inversely proportional to the relative speed.
Because of the Coulomb barrier, this energy dependence is never encountered in charged
particle induced reactions. Results will be presented for several thermonuclear

reactions. Finally, conelusions based on this work will be given.



II. DEVELOPMENT

The expression for average energy conservation in a thermonuclear reaction is given
by

<(E + Ez)cv(kT)> + Q<ov (kT)> = ﬁ <E ov (kt) > . (1
The first term of the left hand side of Eq. (1) is the average kinetic energy removal rate
of the two interacting particles and the second term is the energy production rate of the
reaction. The right hand side is the average kinetic energy appearance rate for all
reaction products.

It is the first term on the right hand side of Eq. (1) which is of current interest.
Before proceeding, the derivation of the thermonuclear reaction rate will be recalled
briefly. Consider particle 1, energy El’ undergoing a collision with 'particle 2, which is in
a Maxwellian distribution at temperature kT. The inflight (Doppler broadened) reaction

rate in this case is given by2
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where M's refer to particle masses and vp is the relative speed, i.e., v, = l\Tl - \Tzl. If

particle 1 is also in a Maxwellian distribution, N(vl), at temperature kT,

M. v
My 372 2 ~ 21kT
w1 © ’ @

2
1

N(Vl) = 4w (

the thermonuclear reaction rate is given by

<ov (KT)> = | dv; N(v)) <ov (v, kT) > . (4)
0



Using Egs. (2) and (3) in Eq. (4), inverting the order of integration, and carrying out the

integration over v leads to the usual resultl
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where u is the reduced mass; u = M1M2/(M1+M2). The relative energy, Er’ is given by Er
1

=M, E'l/(Ml+M2), where E1 and o(E'l) refer to the energy and corresponding cross
section when the target is at rest.

In determining the average energy of the two interacting particles, the same
procedure as just deseribed for the reaction rate will be followed. Analogous to Eq. (4),
the average energy removal rate of @rticle 1 undergoing thermonuclear reactions is

given by

=]

<EovkT)> = 50 dv,N(v)) Ej<ov (v, kT)> . (6)

Equations (2) and (3) are now substituted into Eq. (6) and the order of integration is

inverted, which leads to
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If Eq. (8) is written explicitly as the difference of two integrals, the variable of
integration is changed in the second integral, and the results combined, there will result

one integral over -® < vis® whieh is directly integmble.3 One obtains
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where | is the reduced mass. Substituting Eq. (9) into Eq. (7) and reducing yields
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This analysis is repeated for particle 2 and the result is added to Eq. (10) to obtain

<(E1 + Ezcv(kT) )> =< Elcv(kT)> + <E20v(kT)>
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The average energy of the two interacting particles undergoing a thermonuclear reaction

is then

<(E; + E,ov(kT))>

= - 3KkT . ¢
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We note that Egs. (12) and (13) agree with the sum of the average final particle energies
minus the reaction Q value for the special case of two-body reactions assuming an

isotropic center of mass angular distribution [see Eq. (55) of Ref. 4]



The physical significance of the energy, Eo’ is illustrated if the relative cross
section is given in the Gamow form6
1/2
S(Er) b/Er

o(E) = E e ) (15)

where S(Er) is the astrophysical S factor, the theoretical factor for b is given by

b = 2m Z.Z (Jﬁ)”2 (15)
=m 7,7, (55 ’

and a is the fine structure constant. In units of MeV, b = 0.990 [AIAZ/(A1+A2) ]1/2 Z.Z
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L/ 2. For nonresonant reactions, e.g., d+d, S(E) can be taken as constant. Under these

MeV
conditions, the reaction rate integrand, Eq. (5), has a8 maximum - - the so called Gamow
peak. The relative energy region near this peak makes most of the contribution to the

reaction rate. The reaction rate integral can be estimated by the method of steepest

descent,7 and is characterized by the energy Eo’ where

_ (kTb,2/3
E = (=) . (16)
The relative energy, Eo, is that at the Gamow peak. Similarly, under the added constraint
that E  >> kT/2, the integral in the numerator of Eq. (13) may be estimated by the
method of steepest descent4 with the result that _Eo = Eo as given by Eq. (16). The

energy, Eo’ can thus be considered to be the average relative energy which contributes
most of the reaction rate.

One would then expect that the other term in Eq. (12), 3kT/2, is the average energy
of the center of mass in the laboratory (L) system. To investigate this expectation,
assume a two body interaction with an isotropic center of mass (CM) angular distribution

yielding reaction products 3 and 4. The quantity to be calculated is E3, the average
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energy of reaction product 3. Conservation of average energy and momentum in the CM
system yields for particle 3
«_ Y

Eg = M1+M2(E0+Q) (17)

*
where M1 + M2 = M3 + M4 and E3 is the average energy of particle 3 in the CM system.

-

In terms of velocities, V

—_

3 is now added to ch to obtain Vg the velocity of particle 3 in

_h* — » - . -
the L system. In this case, Va ' Vem T 0, due to the isotropic CM angular distribution,

which leads directly to
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which is the same as the x;esult obtained from integration of the thermonuclear spectra of
particle 3 [Eq. (55) of Ref. 4]. Thus our expectation as to the two terms in Eq. (12) being
the average energy of the center of mass in the L system and the average relative energy
of the two interacting particles is valid.

If the relative reaction rate is now assumed constant, i.e., G(EP)ZI/ZEII_ /2/‘ur =
constant, then

1/2
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which can be factored out of the integrals involved in Eq. (13). This leads to
< (E1 + Ez(k’I‘) ) > = 3kT. (20)

Thus, the assumption that the average energy of the two particles undergoing a
thermonuclear reaction is equal to twice the average energy of the thermal Maxwellian
distribution is only valid for a constant relative reaction rate. Since the relative cross
section is extremely depressed by the Coulomb barrier at low energies, this assumption is

never valid for interaction between charged particles.



II. RESULTS -

The expression for the average energy of the two interacting particles, Eq. (12), has
been programmed assuming a piecewise linear relative cross section - see Appendix A.
Calculations were then performed for selected reactions involving isotopes of hydrogen,
helium, lithium, and boron. All nuclear data came from the Lawrence Livermore
National Laboratory (LLNL) ECPL evaluated charged-particle library.5 Calculated
values (occurring at low temperatures) for which the reaction rate, Eq. (5), is less than

40 . m3/sec have been suppressed.
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The average energy of the two interacting particles for isotopies of hydrogen and
helium is shown in Fig. 1. Except at low temperatures, the behavior is nearly linear. This
is in agreement with the results of Eq. (12) and the discussion through Eq. (16).

Referring again to Fig. 1, the average energy of the two interacting particles for
both d+d reactions and for the p+t reaction is greater than 3kT. The latter reaction is
endoergic with a relative energy threshold of 0.764 MeV. In these cases, the average
kinetic energy being removed due to the reaction is greater than the average kinetic
energy of two particles in the thermal Maxwellian distribution. Thus the high energy
thermal population is being depleted. The energy into the reaction products,
<(E1+E2(kT))>, is thereby enhanced. The converse is true for the d+t and d+°He
reactions at high temperatures for which the average energy of the two interacting
particles is less than 3kT.

Results involving isotopies of lithium and boron are shown in Figs. 2-5. In each of

these reactions, the average energy of the interacting particles is greater than 3kT.



IV. CONCLUSIONS

The average energy ot the two interacting particles undergoing a thermonuclear
reaction is given here and results are presented for selected thermonuclear reactions
among the isotopes of hydrogen, helium, lithium, and boron. It is shown that the average
energy is equal to 3kT when the relative reaction rate is a constant. This circumstance
never occurs for charged particle interactions because of the Coulomb barrier. The
calculations show that the average energy is almost always greater than 3kT, indicating
both a depletion of the high energy tail of the thermal distribution and an energy
enhancement for the thermonuclear reaction products. For energy conservation, any
model describing the kinematics of the reaction products for thermonuclear reactions

should be consistent with the average total available energy, i.e., < (E1 +E 2(kT) )> +Q.



APPENDIX A

If the relative cross section is piecewise linear, i.e.,

O(Er) =8 * bi Er; Er. < Er < Er. !
i i+l

(A.1)

then the two quantities of Eq. (11) can be performed analytically. Referring to these two

terms and using Eq. (A.l) leads to
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One is therefore interested in integrals of the type

Y
Ky = [ X" e X/KT 4o
0

Differentiating Eq. (A.4) by parts leads to the recurrance relation

Kn(Y) = kT [ nKn_l (Y) _Yn e—Y/kT ] ,

with

Ko) = kT [ 1 - Y/KT

Equations (A.5) and (A.6) yield analytic solutions for all necessary values of Kn(y).

(A.2)

(A.4)

(A.5)

(A.6)
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FIGURE CAPTIONS

FIG. 1. Average energy of the interacting particles for selected thermonuclear reactions

involving hydrogen and helium isotopes. The dashed line corresponds to an average
energy equal to 3KkT.

FIG. 2. Average energy of the interacting particles for selected thermonuclear reactions
involving 6Li and isotopes of hydrogen and helium. The dashed line corresponds to an
average energy equal to 3kT.

FIG. 3. Average energy of the interacting particles for selected thermonuclear reactions
involving 7Li and isotopes of hydrogen and helium. The dashed line corresponds to an
average energy equal to 3kT.

FIG. 4. Average energy of the interacting particles for selected thermonuclear reactions

involving 10B and isotopes of hydrogen. The dashed line corresponds to an average energy
equal to 3KT.

FIG. 5. Average energy of the interacting particles for selected thermonuclear reactions

involving 11B and isotopes of hydrogen. The dashed line corresponds to an average energy
equal to 3kT,
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